Download Inorganic Reactions and Methods: Formation of Bonds to O, S, by J. J. Zuckerman, A. D. Norman PDF

By J. J. Zuckerman, A. D. Norman

Boasting various commercial functions, inorganic chemistry kinds the foundation for examine into new fabrics and bioinorganic compounds similar to calcium that act as organic catalysts. Now entire, this hugely acclaimed sequence offers present wisdom in all parts of inorganic chemistry, together with chemistry of the weather; organometallic, polymeric and solid-state fabrics; and compounds correct to bioinorganic chemistry.Content:
Chapter 3.7.1 advent (pages 1–2): A. D. Norman and W. S. Durfee
Chapter 3.7.2.1.2 via Addition to Low?Valent and Unsaturated steel Complexes (pages 2–3): H. B. Abrahamson
Chapter 3.7.2.1.3 through Insertion Into Metal?Ligand Bonds (pages 3–4): W. S. Durfee
Chapter 3.7.2.2 From Water and Alcohols (page 4): R. C. Mehrotra and B. S. Saraswat
Chapter 3.7.2.2.2 via Hydrolysis or Alcoholysis of Metal?Ligand Bonds (pages 4–6): R. C. Mehrotra and B. S. Saraswat
Chapter 3.7.2.3 From Hydrogen Peroxide and natural Peroxides (pages 6–7): M. T. Pope
Chapter 3.7.2.3.2 by means of Oxidation of the Ligands Coordinated to the Metals (page 7): M. T. Pope
Chapter 3.7.2.4 From impartial Oxygen Donor Ligands [Ethers, Aldehydes, Ketones, Pyridine N?Oxides, Phosphine Oxides, Arsine Oxides, and Dialkyl(Aryl) Sulfoxides] (pages 7–8): R. C. Mehrotra and B. S. Saraswat
Chapter 3.7.2.4.2 by way of Insertion into the Metal?Ligand Bonds (pages 8–9): R. C. Mehrotra and B. S. Saraswat
Chapter 3.7.2.5 From Bidentate and Polydentate Oxygen Donor Ligands (From Polyethers and Crown Ethers, Macrocycles, 2,4?Pentanedione, etc.) (pages 9–10): R. C. Mehrotra and B. S. Saraswat
Chapter 3.7.2.6 From Oxides of the most workforce components (pages 10–11): M. T. Pope
Chapter 3.7.2.6.2 by means of response with Complexes of the Metals (page 11): M. T. Pope
Chapter 3.7.2.6.3 through Insertion into Metal?Ligand Bonds (page 11): M. T. Pope
Chapter 3.7.2.7 From OH?, OR?, O22, O?2 (pages 11–12): M. T. Pope
Chapter 3.7.2.7.2 through Oxidation of the Metals and their Complexes (page 12): M. T. Pope
Chapter 3.7.2.8 through steel Atom and comparable Reactions (pages 12–14): ok. J. Klabunde
Chapter 3.7.3 Formation of the Bond among Sulfur and a gaggle IB or IIB aspect (pages 14–15): J. P. Fackler and okay. G. Fackler
Chapter 3.7.3.1.2 through response with steel Complexes (page 15): J. P. Fackler and ok. G. Fackler
Chapter 3.7.3.2 From Hydrogen Sulfide, Hydrogen Polysulfides, and Thiols (pages 15–18): J. P. Fackler and okay. G. Fackler
Chapter 3.7.3.3 From Thiocarbonyls, Thioethers, natural Polysulfides, and different Sulfur Donor Ligands (pages 18–19): J. P. Fackler and okay. G. Fackler
Chapter 3.7.3.4 From natural Thio Acids and different Thio Acids of major crew parts (pages 19–20): J. P. Fackler and ok. G. Fackler
Chapter 3.7.3.4.2 by means of Ligand alternative Reactions with Complexes of the Metals and by means of Sulfur Atom Abstraction (pages 20–21): J. P. Fackler and ok. G. Fackler
Chapter 3.7.3.5 From Bidentate and Polydentate Sulfur Donor Atoms (pages 21–22): J. P. Fackler and okay. G. Fackler
Chapter 3.7.3.5.2 through Ligand Substitution Reactions (page 22): J. P. Fackler and ok. G. Fackler
Chapter 3.7.3.6 From Sulfur Containing Anions (S2?, S2?, [HS?], [RS]?) (pages 22–27): P. F. Brandt and T. B. Rauchfuss
Chapter 3.7.3.7 by means of steel Atom and comparable Reactions (page 28): okay. J. Klabunde
Chapter 3.7.4 Formation of the Bond among Selenium, Tellurium, and Polonium and team IB or IIB components (pages 28–30): E. M. Page
Chapter 3.7.4.1.2 Formation of the Bond with Tellurium (pages 30–32): E. M. Page
Chapter 3.7.4.1.3 Electrolytic Reactions among the weather (page 32): E. M. Page
Chapter 3.7.4.2 by means of response with workforce IB or IIB steel Compounds (pages 33–34): E. M. Page
Chapter 3.7.4.2.2 Ternary Compounds (pages 34–35): E. M. Page
Chapter 3.7.4.3 through Reactions of Binary Acids of Selenium and Tellurium and their Derivatives by means of response with steel Compounds (pages 35–36): E. M. Page
Chapter 3.7.4.4 by way of response of Oxides of Selenium and Tellurium with steel Compounds (page 37): E. M. Page
Chapter 3.7.4.5 through Reactions of the Anions and Oxyanions of the weather with steel Compounds (pages 37–38): E. M. Page
Chapter 3.7.4.6 From Donor Ligands Incorporating the weather Selenium and Tellurium (pages 39–40): E. M. Page
Chapter 3.7.4.6.1.2 Electrochemically pushed Reactions (page 40): E. M. Page
Chapter 3.7.4.6.2 via Reactions with steel Compounds (pages 40–41): E. M. Page
Chapter 3.7.4.6.2.1 response with Alkali steel Selenides, Polyselenides, Tellurides, and Polytellurides (pages 41–43): E. M. Page
Chapter 3.7.4.6.2.2 response with Organochalcogenides (page 43): E. M. Page
Chapter 3.7.4.6.2.3 response with Organoselenols and Tellurols (page 44): E. M. Page
Chapter 3.7.4.6.2.4 response with Trimethylsilyl Chalcogenides (pages 45–46): E. M. Page
Chapter 3.7.4.6.2.5 response with Dialkylselenocarbamates (page 46): E. M. Page
Chapter 3.7.4.6.2.6 response with Triphenylphosphine Chalcogenides (pages 46–47): E. M. Page
Chapter 3.7.4.6.2.7 response with Selenocyanate and Selenourea (pages 47–49): E. M. Page
Chapter 3.7.4.6.2.8 response with Tetrahydroselenophene and Tetrahydrotellurophene and Derivatives (page 49): E. M. Page
Chapter 3.7.4.6.2.9 response with Miscellaneous Ligands (pages 49–50): E. M. Page
Chapter 3.7.4.7 through response with Selenium or Tellurium Compounds in Metal?Organic Chemical Vapor Deposition (Mocvd) and comparable Reactions (pages 50–53): E. M. Page
Chapter 3.8.1 advent (pages 54–55): A. D. Norman and W. S. Durfee
Chapter 3.8.2.1.2 by means of Addition to Low?Valent and Unsaturated steel Complexes (pages 55–58): H. B. Abrahamson
Chapter 3.8.2.1.3 via Insertion into Metal–Ligand Bonds (pages 58–63): W. S. Durfee
Chapter 3.8.2.2 From Water (pages 63–64): R. C. Mehrotra and B. S. Saraswat
Chapter 3.8.2.2.2 by means of Hydrolysis of Transition and internal Transition Metal?Ligand Bonds (pages 64–65): R. C. Mehrotra and B. S. Saraswat
Chapter 3.8.2.3 From Hydrogen Peroxide (pages 65–66): M. T. Pope
Chapter 3.8.2.3.2 through Oxidation of a Ligand Coordinated to a Transition and internal Transition steel advanced (Insertion response) (pages 66–67): M. T. Pope, R. C. Mehrotra and B. S. Saraswat
Chapter 3.8.2.4.2 by means of Alcoholysis of Transition and internal Transition Metal?Ligand Bonds (pages 67–69): R. C. Mehrotra and B. S. Saraswat
Chapter 3.8.2.4.3 by way of Oxidation of Transition and internal Transition Metal?Ligand Bonds (pages 69–70): R. C. Mehrotra and B. S. Saraswat
Chapter 3.8.2.5 From natural Peroxides (page 70): M. T. Pope
Chapter 3.8.2.5.2 by way of Substitution Reactions of Transition and internal Transition Metal?Ligand Bonds (pages 70–72): M. T. Pope, R. C. Mehrotra and B. S. Saraswat
Chapter 3.8.2.6.2 through Insertion into Transition and internal Transition Metal?Ligand Bonds: R1R2Co (page 72): R. C. Mehrotra and B. S. Saraswat
Chapter 3.8.2.6.3 via Oxidation of the Transition and internal Transition steel Complexes (Ligand Degradation, Oxygen Abstraction) (pages 72–73): R. C. Mehrotra and B. S. Saraswat
Chapter 3.8.2.7 From Bidentate and Polydentate Oxygen Donor Ligands (Crown Ethers, Macrocycles, 2,4?Pentanedione, etc.) (pages 73–75): R. C. Mehrotra and B. S. Saraswat
Chapter 3.8.2.7.2 by means of Oxidation of Transition and internal Transition steel Complexes (pages 75–76): R. C. Mehrotra and B. S. Saraswat
Chapter 3.8.2.8 From major crew point Oxides (page 76): M. T. Pope
Chapter 3.8.2.8.2 through Insertion into Transition and internal Transition steel Bonds (pages 76–77): M. T. Pope
Chapter 3.8.2.8.3 by way of Oxidation of Transition and internal Transition Metals and their Compounds (pages 77–78): M. T. Pope
Chapter 3.8.2.9 From Oh?, O2?, O?2, and O2?2 (pages 78–79): M. T. Pope
Chapter 3.8.2.9.2 by means of Oxidation of the Transition and internal Transition Metals and their Complexes (page 79): M. T. Pope
Chapter 3.8.2.10 From Alkoxide and Carboxylate Anions (pages 79–82): R. C. Mehrotra and B. S. Saraswat
Chapter 3.8.2.11 From steel Atom and comparable Reactions (page 82): ok. J. Klabunde
Chapter 3.8.2.11.2 Oxidative Addition/Complexation Reactions (page 83): okay. J. Klabunde
Chapter 3.8.2.11.3 uncomplicated Orbital blending: Dioxygen and Carbon Dioxide with steel Atoms (pages 83–84): okay. J. Klabunde
Chapter 3.8.3 Formation of the Sulfur?Transition and Inner?Transition steel Bond (pages 84–85): J. P. Fackler and okay. G. Fackler
Chapter 3.8.3.1.2 by way of response with the Transition steel and internal Transition steel Compounds (pages 85–86): J. P. Fackler and okay. G. Fackler
Chapter 3.8.3.2 From Hydrogen Sulfide, Polysulfides, and Thiols (pages 86–89): J. P. Fackler and ok. G. Fackler
Chapter 3.8.3.2.2 via Insertion of Sulfur into Transition and internal Transition Metal?Ligand Bonds (pages 89–90): J. P. Fackler and okay. G. Fackler
Chapter 3.8.3.2.3 through Oxidation of the Transition steel and internal Transition steel Complexes (page 90): J. P. Fackler and okay. G. Fackler
Chapter 3.8.3.3 From Thioethers, natural Polysulfides, and different Sulfur Donor Ligands (pages 90–91): J. P. Fackler and ok. G. Fackler
Chapter 3.8.3.4 From natural Thioacids, Thiophosphates, Xanthates, and different 1,1?Dithio Compounds (See 3.7.3, desk 1) (page 91): J. P. Fackler and ok. G. Fackler
Chapter 3.8.3.4.2 through Ligand substitute Reactions with Complexes of the Metals (pages 92–96): J. P. Fackler and ok. G. Fackler
Chapter 3.8.3.4.3 via Insertion of Cs2 (or P4S10) into Metal?Ligand Bonds (pages 96–97): J. P. Fackler and ok. G. Fackler
Chapter 3.8.3.5 From Bidentate (Excluding 1,1?Dithiols) and Polydentate Sulfur Donor Ligands (pages 97–98): J. P. Fackler and ok. G. Fackler
Chapter 3.8.3.5.2 by means of Ligand Substitution Reactions (page 98): J. P. Fackler and okay. G. Fackler
Chapter 3.8.3.6 From Sulfur Anions (S2?, HS?, S2?X, RS?)?Transition and internal Transition steel Bonds (pages 98–105): T. B. Rauchfuss
Chapter 3.8.3.6.2 With Polysulfido Anions (S2?X) (pages 105–109): T. B. Rauchfuss
Chapter 3.8.3.6.3 With Organosulfur Anions [RS]? (pages 109–115): T. B. Rauchfuss
Chapter 3.8.3.7 From steel Atom and comparable Reactions (page 115): okay. J. Klabunde
Chapter 3.8.3.7.2 Oxidative Addition/Complexation Reactions (page 116): ok. J. Klabunde
Chapter 3.8.4 Formation of the Selenium–, Tellurium–, and Polonium–Transition and internal Transition steel Bond (pages 116–123): P. F. Brandt
Chapter 3.9.1 advent (page 124): M. L. Thompson
Chapter 3.9.2 through Reactions of Xenon Fluorides and Oxyfluorides with Oxides and Oxysalts (pages 124–127): M. L. Thompson
Chapter 3.9.3 via response of Xenon Fluorides and Oxyfluorides with Oxyacids and their Derivatives1 (pages 127–129): M. L. Thompson
Chapter 3.9.4 Bonds among Oxygen and Krypton or Radon (page 129): M. L. Thompson
Chapter 3.10.1 advent (pages 130–132): A. D. Norman and M. O'Keeffe
Chapter 3.10.1.1.2 exterior Equilibrium with Oxygen Fugacity (pages 132–133): M. O'Keeffe
Chapter 3.10.1.1.3 family members among Nonstoichiometry and actual houses (pages 133–134): M. O'Keeffe
Chapter 3.10.1.2 Nonstoichiometry and Shear Planes (page 134): C. R. A. Catlow
Chapter 3.10.1.2.1 creation (pages 134–135): C. R. A. Catlow
Chapter 3.10.1.2.2 Structural houses (pages 135–137): C. R. A. Catlow
Chapter 3.10.1.2.3 balance (pages 137–141): C. R. A. Catlow
Chapter 3.10.1.3 prolonged Defects (pages 141–143): R. J. D. Tilley
Chapter 3.10.1.3.2 Tunnel and Pentagonal Column levels (pages 143–146): R. J. D. Tilley
Chapter 3.10.1.3.3 Chemical Twinning and similar constructions (pages 146–148): R. J. D. Tilley
Chapter 3.10.1.4 Coherent Intergrowth (pages 149–150): R. J. D. Tilley
Chapter 3.10.1.4.2 Disordered prolonged Defects (pages 150–151): R. J. D. Tilley
Chapter 3.10.1.5 class of Nonstoichiometric Oxides (pages 151–152): A. ok. Cheetham and R. J. D. Tilley
Chapter 3.10.1.5.1 Oxide levels with slim Composition levels (pages 152–153): A. okay. Cheetham and R. J. D. Tilley
Chapter 3.10.1.5.2 Grossly Nonstoichiometric levels (pages 153–154): A. okay. Cheetham and R. J. D. Tilley
Chapter 3.10.1.5.3 Homologous sequence of steel Oxides (page 154): A. ok. Cheetham and R. J. D. Tilley
Chapter 3.10.1.5.4 Coherently Intergrown buildings (page 155): A. ok. Cheetham and R. J. D. Tilley
Chapter 3.10.1.5.5 Oxides with Modulated constructions (pages 155–157): A. ok. Cheetham and R. J. D. Tilley
Chapter 3.10.2 reliable Bivariant Oxide stages: Nonstoichiometric Oxides right (pages 157–158): L. E. Conroy
Chapter 3.10.2.2 Binary Oxides with a large Composition diversity (pages 158–160): L. Eyring
Chapter 3.10.2.2.2 Oxygen?Deficient, Fluorite?Related constructions: Lanthanide Oxides (Ce, Pr, and Tb greater Oxides) (pages 160–165): L Eyring
Chapter 3.10.2.2.3 Oxygen?Excess Fluorite buildings, UO2+? (pages 165–166): L. Eyring
Chapter 3.10.2.3 a number of Oxides with element disorder and illness advanced Equilibria (pages 166–167): P. okay. Gallagher and E. M. Gundlach
Chapter 3.10.2.3.2 aspect illness Nonstoichiometry in Spinels and comparable Oxides (pages 167–170): P. okay. Gallagher and E. M. Gundlach
Chapter 3.10.2.3.3 Wide?Range Nonstoichiometry: Perovskite?Derived constructions (pages 170–171): P. ok. Gallagher and E. M. Gundlach
Chapter 3.10.2.3.4 Wide?Range Nonstoichiometry: Oxygen?Deficient Fluorite Structures1,2 (pages 172–173): P. ok. Gallagher and E. M. Gundlach
Chapter 3.10.2.3.5 Wide?Range Nonstoichiometry: combined Cation Oxides; prompted Valence results by way of immense Substitution of Cations Having varied Valency (pages 173–175): P. okay. Gallagher and E. M. Gundlach
Chapter 3.10.3 Operationally Nonstoichiometric Oxide stages (pages 175–177): R. J. D. Tilley
Chapter 3.10.3.1.2 Reo3?Related constructions; Molybdenum and Tungsten Oxides (pages 177–178): R. J. D. Tilley
Chapter 3.10.3.1.3 Niobium Oxides and comparable buildings (pages 178–182): R. J. D. Tilley
Chapter 3.10.3.2 Nonstoichiometric Layer constitution Oxides (page 182): M. Greenblatt and B. Raveau
Chapter 3.10.3.2.1 Layered Oxides in line with the Perovskite constitution (pages 183–184): M. Greenblatt and B. Raveau
Chapter 3.10.3.2.1.2 hot temperature Superconducting Cuprates (pages 184–191): M. Greenblatt and B. Raveau
Chapter 3.10.3.2.1.3 Intergrowth of Perovskite with “Bi2O2” Layers: Aurivillius levels (page 191): M. Greenblatt and B. Raveau
Chapter 3.10.3.2.1.4 Brownmlllerite family members: (Amo3)NAmo2 (pages 192–193): M. Greenblatt and B. Raveau
Chapter 3.10.3.2.1.5 Titanates and Niobates, ANMNO3N+2 and Molybdates, Cs2MoNO3N+1 (pages 193–194): M. Greenblatt and B. Raveau
Chapter 3.10.3.2.2 Oxides in accordance with the Spinel constitution; Hexagonal Ferrites, ??Alumina Oxide varieties, and LiXM2O4 (M = Ti, V, Mn)1?3 (pages 195–196): M. Greenblatt and B. Raveau
Chapter 3.10.3.2.2.2 The ??Alumina relatives (pages 196–197): M. Greenblatt and B. Raveau
Chapter 3.10.3.2.2.3 LiXM2O4 (M=Ti,V, Mn) stages (page 197): M. Greenblatt and B. Raveau
Chapter 3.10.3.2.3 Intergrowths of the Cage Oxide A3M3O21 with a Tunnel constitution, A2M6Si4)261 (pages 197–199): M. Greenblatt and B. Raveau
Chapter 3.10.3.2.4 Oxides with Intercalation constructions: Layers equipped up of Edqe?Sharing Octahedra (pages 199–202): M. Greenblatt and B. Raveau
Chapter 3.10.3.2.4.2 HXMoo3: Hydrogen?Intercalated Compounds of Moo3 (pages 202–203): M. Greenblatt and B. Raveau
Chapter 3.10.3.2.4.3 Molybdenum Bronzes AXMoYOZ (pages 203–207): M. Greenblatt and B. Raveau
Chapter 3.10.3.2.4.4 AXMO2 Oxides (pages 207–210): M. Greenblatt and B. Raveau
Chapter 3.10.3.2.4.5 one other kin of AXMo2 Oxides (pages 210–211): M. Greenblatt and B. Raveau
Chapter 3.10.3.2.4.6 Titanates and Titanoniobates (or Tantalates) with a Layer constitution (pages 211–214): M. Greenblatt and B. Raveau
Chapter 3.10.3.3 Tunnel constitution Oxides1–8 (pages 214–215): M. Greenblatt and B. Raveau
Chapter 3.10.3.3.1 Tungsten, Molybdenum Bronzes, and similar Structures1–8 (pages 215–221): M. Greenblatt and B. Raveau
Chapter 3.10.3.3.2 Titanium Bronzes and similar Oxides (pages 222–225): M. Greenblatt and B. Raveau
Chapter 3.10.3.3.3 Hollandite, Psilomelane, Ramsdellite, and comparable Oxides (pages 225–228): M. Greenblatt and B. Raveau
Chapter 3.10.3.3.4 Vanadium Bronzes with a Three?Dimensional constitution (page 228): M. Greenblatt and B. Raveau
Chapter 3.10.3.3.5 advanced Oxides with Host Lattice outfitted up from Octahedra and Tetrahedra (pages 228–229): M. Greenblatt and B. Raveau
Chapter 3.10.3.3.5.1 Phosphate Tungsten Bronzes (PTB) (pages 229–233): M. Greenblatt and B. Raveau
Chapter 3.10.3.3.5.2 Phosphate Niobium Bronzes (PNB) (pages 233–237): M. Greenblatt and B. Raveau
Chapter 3.10.3.3.5.3 Phosphate Molybdenum Oxides (pages 237–239): M. Greenblatt and B. Raveau
Chapter 3.10.3.3.5.4 different diminished Transition steel Phosphates (page 239): M. Greenblatt and B. Raveau
Chapter 3.10.3.3.5.5 Siliconiobates, Silicotantalates, and Corresponding Germanium Compounds (pages 239–240): M. Greenblatt and B. Raveau
Chapter 3.10.3.4 Adaptive buildings (pages 240–241): R. S. Roth
Chapter 3.10.3.4.1 Oxides with Vernier?Type Adaption constructions (pages 241–245): R. S. Roth
Chapter 3.10.3.4.2 Double Oxides in keeping with Tantalum Pentoxide and similar stages (pages 245–249): R. S. Roth
Chapter 3.10.3.4.3 The steel Uranates and similar Oxides (pages 249–250): L. E. Conroy
Chapter 3.10.3.5 combined Valence, combined Anion levels, together with Oxides with Cations of Variable Valence (or combined Cations) Balanced by way of Substitution of Altervalent Anions (page 250): L. E. Conroy
Chapter 3.11.1 creation (pages 251–252): E. Kaldis
Chapter 3.11.2 Chemical Bonding and edition of actual homes via Chemical Parameters (pages 252–253): E. Kaldis
Chapter 3.11.2.2 4f?Transition steel (Rare Earth) Chalcogenides (pages 253–255): E. Kaldis
Chapter 3.11.3 Synthesis and Crystal development less than managed Thermodynamic Parameters (pages 255–256): E. Kaldis
Chapter 3.11.3.1 keep an eye on of Nonstoichiometry (pages 256–259): E. Kaldis
Chapter 3.11.3.2 Chemical Vapor delivery of the Chalcogenides (pages 259–260): E. Kaldis
Chapter 3.11.4 by means of Reactions in Chalcogen?Hydrogen platforms (pages 260–261): P. okay. Dorhout and H. Steinfink
Chapter 3.11.4.2 Of Compounds of Metals (pages 261–262): P. ok. Dorhout and H. Steinfink
Chapter 3.11.5 via Precipitation lower than basic and Supercritical stipulations (page 262): P. ok. Dorhout and H. Steinfink
Chapter 3.11.5.1 From Aqueous answer (pages 262–263): P. ok. Dorhout and H. Steinfink
Chapter 3.11.5.2 From Nonaqueous resolution (pages 263–264): P. okay. Dorhout and H. Steinfink
Chapter 3.11.6 via Insertion Reactions from suggestions (pages 264–269): A. Lerf
Chapter 3.11.6.1 Layered Transition steel Dichalcogenides (pages 269–273): A. Lerf
Chapter 3.11.6.1.2 Unsolvated steel Intercalation Compounds: Posttransition Metals (pages 274–276): A. Lerf
Chapter 3.11.6.1.3 Unsolvated steel Intercalation Compounds: Transition Metals (page 276): A. Lerf
Chapter 3.11.6.1.4 “Misfit Layer Compounds” (pages 277–278): A. Lerf
Chapter 3.11.6.1.5 Solvated stages (pages 278–282): A. Lerf
Chapter 3.11.6.1.6 Molecular Intercalation Compounds (pages 282–284): A. Lerf
Chapter 3.11.6.1.7 advanced Intercalated Species (pages 284–286): A. Lerf
Chapter 3.11.6.2 different Layered Chalcogenides (pages 286–289): A. Lerf
Chapter 3.11.6.3 Chain Stuctures (pages 290–292): A. Lerf
Chapter 3.11.6 A Framework buildings (pages 292–293): A. Lerf
Chapter 3.11.6.4.2 constructions with a Three?Dimensional web of Channels (pages 293–295): A. Lerf
Chapter 3.11.7 by means of Reactions in Melts (pages 295–296): P. ok. Dorhout and H. Steinfink
Chapter 3.11.7.1 In Molten Metals (page 296): P. okay. Dorhout and H. Steinfink
Chapter 3.11.7.2 In Molten Salts (pages 296–297): P. okay. Dorhout and H. Steinfink

Show description

Read Online or Download Inorganic Reactions and Methods: Formation of Bonds to O, S, Se, Te, Po (Part 2), Volume 6 PDF

Best inorganic books

Inorganic Chemistry (2nd Edition)

A number one textbook which bargains a clean and fascinating method of the instructing of contemporary inorganic chemistry and provides a transparent, well-balanced advent to the major rules of the topic. the new full-colour textual content layout with three-d illustrations brings the topic to existence. scholars may be able to relate the chemistry they learn how to way of life via quite a few functions and subject bins.

Inorganic Reactions and Methods: Volumes 1-18 Part 2 Compound Indexes

This is the great two-volume index to the entire compounds, matters, and authors featured within the eighteen-volume Inorganic Reactions and techniques sequence. Already deemed "invaluable" through the magazine of Organometallic Chemistry, the sequence turns into much more crucial with the booklet of those simple, quick-reference significant other indexes.

Spin-Crossover Materials: Properties and Applications

The phenomenon of spin-crossover has a wide influence at the actual houses of an outstanding fabric, together with its color, magnetic second, and electric resistance. a few fabrics additionally exhibit a structural section swap through the transition. numerous sensible functions of spin-crossover fabrics were verified together with exhibit and reminiscence units, electric and electroluminescent units, and MRI distinction brokers.

Organometallics in Synthesis, Third Manual

This most up-to-date variation allows readers to grasp new sessions of organometallic compounds and synthesesA renowned source utilized by man made natural chemists world wide, this publication allows readers to behavior seamless artificial reactions concerning key organometallics. each one response is decided forth within the book's acclaimed recipe-style structure in order that readers can simply reflect the consequences of their personal labs.

Extra resources for Inorganic Reactions and Methods: Formation of Bonds to O, S, Se, Te, Po (Part 2), Volume 6

Sample text

Wiley-Interscience, New York, 1972, p. 141. 2 By Oxidation of the Ligands Coordinated to the Metals Phthalocyanines of Cu, Ag, Zn, and Hg are oxidized to the aquo or sulfato complexes, phthalimide, and ammonium ion by H 2 0 z in 17 M HzSO4l. (M. T. POPE) 1. B. D. Berezin, G. V. Sennikova, Kinet. Catal. (Engl. ), 9, 437 (1968). 1 By Ligand Displacement Reactions with Transition Metal Complexes (i) From Ethers. Although T H F reacts with ZnC1, and M[Hg(SCN),][M = Cu(I1) and Zn(II)] to yield the neutral adducts ZnCl,.

Ph3P),CuMe + COz THF, -40°C (Ph3P)2Cu(OOCMe) (b) (M. T. POPE) 1. R. Eisenberg, D. E. Hendriksen, Ado. , 28, 79 (1979). 2. M. E. Volpin, I. S. Kolomnikov, in Urganometallic Reactions, Vol. 3, E. I. Becker, M. , 1975, p. 313. 1 By Ligand Substitution Reactions with Complexes of the Metals The solubility products of the hydroxides (or hydrous metal oxides) of Cu, Ag, Au, Zn, Cd, and Hg are listed in Table 1. Hydroxides are precipitated by treatment of complexes of the metals with OH-, provided the instability constants by the complexes' are of appropriate magnitude.

J. Hardy, Q. Ret. Chem. , 18, 361 (1964). 4. W. D. Harrison, J. B. Gill, D. C. Goodall, J. Chem. , 847 (1979). 2 By Reaction with Complexes of the Metals Liquid N z 0 4 reacts with ZnClz to give the nitrate and NOCl. Liquid SOz reacts with Zn dialkyls yielding ZnO and the corresponding sulfoxide'. (M. T. POPE) 1. B. 0. Field, C. J. Hardy, Q. Ret.. Chem. , 18, 361 (1964). At 150°C, COz inserts into the Zn-C bond of a-bonded alkyls or aryls, Et2Zn + 2CO2- (EtCOO)zZn (a) These reactions are catalyzed by organic N-bases such as bipyridine or N-methylimidazole'.

Download PDF sample

Rated 4.12 of 5 – based on 15 votes